![]() |
![]() |
![]() |
![]() |
![]()
Because human intrusion is a potential cause of repository breaching during any 10,000-year regulatory period, one of the tenets of radwaste disposal is that a candidate environment should be free of valuable natural resources that could stimulate future explorations. Since the LWA is underlain by exploitable potash beds in the McNutt interval (Figures 2 and 4) and is surrounded by oil
Regional Flow in the Rustler Formation
Transport modeling entails many parameters, known or approximated. In order to model the paths and rates of transport of radionuclides in groundwater, there must be defined all necessary groundwater fluxes, boundary conditions, material properties and chemical processes. In this instance, a boundary following divides encompasses about 2300 square miles to form the lateral limits, while the top and bottom of the Culebra dolomite, 23 ft. thick, form the vertical limits. Fixed hydraulic heads are assigned at the lateral boundaries, commensurate with measured or deduced heads, and the model limits are defined as either no-flow (impermeable) or discharging (permeable) boundaries. If arranged conservatively, those boundaries are so distant from the LWA that errors in selecting heads and flow properties there should have little effect at the LWA perimeter, the compliance boundary. Heads within the model, determining gradients everywhere, have been adjusted according to measured heads at wells penetrating the Culebra dolomite. If the PA model was grossly correct, that only regional flow based on current heads in the Culebra mattered, the effort might justify minimal transport via the groundwater pathways. DOE relies upon low matrix-dominated permeability of the Culebra (modeled as a single fracture) in its claim that the Rustler is thus a barrier to significant flows to the accessible environment.
The current southerly gradient beneath the LWA, and a fairway of high Culebra transmissibility southwards through DOE-1, directs modeled Culebra flow paths from the repository southward into regions of low transmissibilty and to a distant discharge area on the Pecos River (Malaga Bend). But had they incorporated the low heads at WIPP-29 (2968 ft.) and Laguna Grande (2950 ft.), modeled paths would have turned west to Nash Draw (Phillips and Snow, 1998, p. A-8). Gradients in the Rustler are centripetal to Laguna Grande (Kelly, 2000), consistent with the regional evidence that the Rustler drains westerly to Nash Draw. Computed travel times through the Culebra would have been much shorter if model heads had been realistically represented.
The Culebra dolomite has been modeled as a continuous porous medium cut by a single horizontal fracture, an erroneous conception argued to be conservative. First of all, the horizontal fractures are bedding plane breaks on shaley partings without significant hydrologic importance because they are tightly closed until unloaded or sampled by coring. As may be seen at Culebra Bluffs, there are numerous vertical and inclined fractures (Swift., 1992). Many are enlarged by dissolution near the surface, and these are probably good conductors, but DOE has never tested their individual properties in the buried Culebra. They form two orthogonal sets trending NE and NW (a tectonic pattern pervasive throughout the Delaware Basin). Cores reveal their antiquity by mineral infillings of gypsum that render the fractures locally impermeable, indeed, partitioning the matrix into isolated permeable blocks, the probable character of the Culebra east of the LWA (as at P-18). Inclined fractures are also present at Culebra Bluffs and probably wherever differential subsidence has occurred over regions of salt removal. In the subsurface, inclined fractures are also gypsum filled, but to a variable degree due to dissolution. Westward across the site, the proportion of fractures lacking gypsum infillings seen in drill cores increases (Ferrall and Gibbons, 1980), and gypsum infillings are absent at Culebra Bluffs. Neill, et. al, (1998, p.11) suggest that fracture openings formed due to dissolution of Rustler salt and consequent deformations. It may be that within the LWA, Culebra flow is not controlled by either matrix permeability nor by fracture permeability, but by elongate dissolution channels formed, perhaps at the intersections of fractures and the Culebra contacts. If DOE had fully characterized Culebra fracture flow properties by slant-hole coring, dissolution conduits would also have been found and described, and by necessity, modeled. Tests have revealed such a great range of transmissibilities (T = hydraulic conductivity times aquifer thickness) near wells completed in the Culebra that the degree of channeling must be the main variable across the site. East of the LWA, measures are on the order of 10-3 ft.2/day. It is on the order of 0.1 ft.2 /day on site, on the order of 102 ft.2/day west of the LWA, and 103 ft.2/day in Nash Draw. Thus T increases westward by five to six orders of magnitude (Phillips and Snow, 1998, p A-3). Many individual tests give different transmissibilities, depending upon the observation well used to interpret drawdowns. Of 42 wells tested, high measures were reported at wells WIPP-13, H-6, P-14, H-11, DOE-1 and DOE-2 (Figure 5). Local and directional variability is typical of karst regions with widely distributed solution channels, reflecting chance proximity of each test well to the conduits. The observed irregular increase of T from east to west reflects a systematic increase in the dissolution of fracture fillings, coalescence of smaller channels into larger conduits and the development of cross-connecting fractures and channels to other Rustler strata (Hill, 1999, Neill, et. al., 1998). Since pumping tests in the Culebra produce greatly different responses at adjacent observation wells, reflecting Rustler anisotropy and heterogeneity, the conservative approach to modeling would be to utilize at a site the greatest interpreted transmissibility, or at least the geometric mean of directional values. Instead, DOE has arbitrarily assumed transmissibility values at well sites within 1.5 miles of the center of the repository that are one to two orders of magnitude smaller than the highest values revealed by the hydrologic tests (Phillips and Snow, 1998, p. A-3). The consequence is that computed travel times across that first 1.5 miles from the source are exaggerated by similar magnitudes. Consistent with Doe's assumptions that Culebra flow is confined and that transmissibility is due solely to matrix or hypothetical horizontal fracture properties, PA modeling was conducted with a continuous T-field interpolated from 39 selected observations. The mathematical method assumes that T is a continuously varying point-function, an invalid procedure in the presence of occasional large, discrete solution conduits of unmeasured, thus uncertain conductivity, randomly placed with preferred orientations due to fracture controls and former hydraulic gradients. At WIPP-33, a site 0.54 miles west of the LWA, a hole drilled in the center of a sinkhole intercepted a cavern in the Dewey Lake and four caverns in the Rustler as deep as the Magenta dolomite. DOE neglected to test that well hydrologically nor subsequently to monitor it. Though only that test hole and one shaft. exposure (Figure 8) indicate the actual geometry of parts of the karst conduit system, that deficiency stems from an apparent unwillingness to explore for such features. Prudence should have demanded a conservative interpretation of the potential consequences of karst, at least until the necessary investigations were done.
Mercer (1983), Chaturvedi and Channel (1985, p. 40) and Brinster (1989, p. IV-75) discussed the fact that the Magenta has freshwater heads as great as 155 ft. higher than that of the Culebra within most of the LWA (except at WIPP-13), but that the two dolomites have coincident heads from the west boundary of the LWA to Nash Draw. Such a head difference at locations within the LWA may be wholly post-disturbance, reflecting short-term Culebra confinement and perhaps the sealing of old karst features between the two strata.
|
![]() |